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This psper anslyzes the appearance and distribution of noise on 

a spectrum obtained by a Fourier transformation of 831 interferogram 

which wtw the source of the spectrum and rioise. 

This is accomplished through a discrete formlatio=1 by use of 

sampling theory end statistical methods. 

formlation, a noise comparison of conventional spectrometers and 

interferometers is readily obtained which verifies that Pellgett's 

ad-rantage does hold f dr interferometers with non-backgrmd limited 

detectors. 

As a coisequence of this 
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INTRODUCTION 

The purpose of this paper is t o  analyze the s ta t i s t ica l  chazacteristics of 

noise existing on a spectrum when the spectrum has been obtained by ~ a n s  of a 

two-beam interferrrmeter spectrometer. 

associated with a spectrum obtained by a Fourier transform of an interferogram 

w i l l  ‘be cierived. 

trmter has a & signal-to-noise advantage Over a conventional spectrometer 

when the detector used is  non-background limited, M being the nuniber of resolv- 

able spec t rd  conqonents. 

referred t o  as Fellgett ‘s  advantage. 

In this analysis the distribution of noise 

a s o ,  it w l U .  be s h m  that the use of an interferometer spec- 

This advantage in signal-to-noise ra t io  i s  cQmmonly 

A considerable number of papers have been written on the interferometer 

spectrometer; consequently, the interferometer and i t s  basic theory w i l l  be 

discussed here only t o  the extent needed for  orientation.lJ2 

Assum that an interferameter is illuminated by a monochramatic coherent 

source of constant intensity. Then, the interference intensity wave i s  

I ( t )  = I ( l + C O S T w t )  

w = 2Ye, f = c /h  > Y = 2v/c where 

I 

l ight ,  and v i s  the velocity of the i n t e r f e rmte r  mirror. For heterochromatic 

is  the light intensity, h i s  the wavelength of l ight,  c is the velocity of 

radiation the interference wave  becones 
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This intensity wave i s  incident on a detector; thus, the output of‘ the detector 

i s  proportional t o  (1) and i s  of the f o r m  

 he right-hand term of (2) is then essentially an electr ical  analog of the 

7 .  The phase angles T(u) will be zero, provided input intensity fluctuations 

do not occur, a l l  system parmters are linear, and the proper time origin i s  

established. The desired spectrum is  obtahed from the Fourier transform of the 

non d-c term of the interferogram Eq. (2), and the transform my  be expressed 

as 

where the first and second integrals transform the even and odd parts of e ( t ) ,  

respectively. In  particular, if the phase angle Cp(w) = 0 for a l l  w i n  (3) ,  

then e ( t )  i s  an even flmction and the second integral in (3) is  zero. 

DISXREZE FORMULATION 

I n  general, mos t  spectra observed will be continuous. H o w e v e r ,  provided 

that saqpl in& theory is correctly applied, the formlas of Fourier transformation 

spectroscopy m y  be expressed in a discrete form as w e l l  as the more faStiliEu: 

integral representation. 

has several advantages and will therefore be used i n  the following analysis. 

For the purpose of this paper the discrete formlation 

S a m p u  theory shms3 that i f  a function i s  t inel imited t o  T seconds 

(i .e., the f’unction i s  

duration) and contains 

zero a t  a l l  points artside an interval T seconds in 

negligible frequency components greater than B cycles 
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per second, then the function (and therefore i t s  Fourier transform) may be 

coqpletely deterznined (i.e., reconstructed) by 2BT sanrgles taken in the time 

domain a t  intervals of 1/2B secondsq or in the frequency domain at intervlals of 

I/T cycles per ~ecand -B t o  +B. 

If q l b g  theory is used then me may write Eq. (1) as 
pr, r 

i-1 

I i t j  = 1 i ( i+cos7~ t j  
Y 

Equation (2) beems 

and (3) may be expressed as 

I=-BT I=-BT 

and 

Several observations 

g e n e r u t y  of (4) and ( 5 )  

should be made at this poiat w i t h  regard t o  the 

First, owin@; t o  physical limitations of the instrument, 

(4) holds only for a limited observation t i m e  

is not ( 5 )  but is 

T. Hence, the true detector signal 

eT(t), where 

-T/2 5 t 5 T/2 
eT(t) = e( t )h( t )  with h ( t )  = (7) 



and e( t )  , is given by ( 5 ) .  However, the Fourier transform of the i t h  term 

of the truncated wave eT(t) i s  

FurTthermore, the mplj-tude ccqponents, a i ,  of Eq. ( 5 )  are p r o p o r t i d  t o  the 

anplitudes of the magnitude of the Fourier transform a t  the sampling points 

a i  = 2rri/T, that is, 

where the factor 2/T appears because Eq. ( 5 )  is  in the form of a Fourier sin-cos 

series and there is a difference of a factor of 2/T in the definition of the 

series coefficients and of this transform. 

Secondly, the generality of representing the interference wave (1) by (4) 

using a discrete sum of M terms t o  cover the continuum of frequencies 

needs t o  be considered. Essentially, the mchanism of the interference process 

and i t s  detection is one of compressing and transletting the spectrum of optical 

frequencies into a wave, eT(t), with a spectrum of freqmncies, say, frm 

0 t o  B cps, which may be i n  the audio-frequency range. 

mapping the intensity pattern of the optical interferogram into i ts  electr ical  

representation eT(t). The point which requires exaaination then is, how good 

w i l l  the representation of the desired optical spectrum be if  it i s  obtained from 

the Fourier transform of 

band-limited (B cps), and represented by a discrete number of independent terms. 

The answer t o  this question will be given la te r  i n  this paper, where it is shown 

fi t o  fM 

This i s  a c c q l i s h e d  by 

eT(t), which is bath tinte-lbited (T sec), approximately 
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that the n M e r  of resolvable c q o n e n t s  M, required t o  represent the true 

optical spectrum of a continuum of frequencies fl t o  fM is BT. Since the 

signal. eT(t)  may be ccmpletely represented by 2BT independent data, according 

t o  samplln@; theory, the sumrmations of (4) and ( 5 )  completely describe the desired 

optical spectnm! within the resolution detembed by eT(t) when the source under 

observation consists of a continuum of frequencies. It should be noted that BT 

independent amglitude data and BT independent phase data are required t o  com- 

pletely specify e T ( t ) ,  but the phase informtion is deleted i n  the coxputation 

of the mgnitude of the Fourier transform. 

TRluJsFoRMATlON OF ADDITIVE NORMAL INTERFEROGRAM NOISE 

As indicated i n  the previous section, an interferogram i s  a t- record 

whose Fourier transform gives the spectral data of the observed source. Any 

noise in the t- record i s  redistributed when the Fourier transformtion is  

performed. 

the noise i n  the spectrum, as compared with a conventional spec t rmter .  

following section it will be shown that, although the noise i s  redistributed i n  

a different form with different s ta t i s t ica l  p e t e r s ,  the signal-to-noise ra t io  

per spectral element of a spectrum derived f’rm an interferogram does exhibit 

Fellgett ’ s advantage 

There has been s m  confusion as t o  huw such a transformation affects 

In the 

To determine the effect on the spectrum of noise appearing on the t- 

f’unction, first consider the noise probability density function and haw it trans- 

forms. 

process does not introduce additional noise puwer. 

i n  practice, since discrete formulation is  possible by sampling theory, thus 

allowing the  operation t o  be per fomd by a digi ta l  coqputer program. 

In  doing th i s ,  it w i l l  be necessary t o  assume that the transformation 

This assumption is  reasonable 

6 



Because of the detector every asrp3Ltud.e sanple of the interferogram 

eT(t) will be measured with saglie uncertainty, say q for the i t h  samgle. 

Then the resultant in te r fe rqpm will be 

where eb(t) is the true sigrxi~. and E(t) i s  the noise, or i n  a sampkd form 

(10) a ei = e$+€%, i = 0, fl, 22, e.., %T 

Assm that the randoan noise 

w i t h  zero mean. 

mally distribuAx?d noise that i s  additively suprimnosed on the true interfercgram 

€T( t )  belongs t o  a nOrmal probability distributian 

Tbis s ta t i s t ica l  characterization will include a l l  random nor- 

and whose saaples q a m  statist ically independent. 

!be probability density function for any error si 

1,2 - { s } a E  
1 P(€)d€ = 

(2xcr2) 

where  $ = variance of q. It can be verified that the variance, 02, i s  

equal t o  the average puwer of the aqkitudes of E(t). 

the s ta t i s t ics  of the time daolain noise, c ( t ) ,  on the interferogram e,(t). 

Now that the time donain noise t o  be considered has been formulated, the goal 

will be t o  s ta t is t ical ly  characterize t h i s  noise i n  the transformed spectrum. 

Thus, Eq. (11) expresses 

ET(%) expressed i n  terms of' i t s  sample form may be transfarmed by (6) which  

is far w = b& 

where 

5 0  
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and 

n=-BT 

= o  

For a given frequency E(W) is a weighted sum of all the 

of the central Umit theorem7 it can be sham for large 

variables 

arqplitudes of a(w) and B(w) are represented by 

E i  so that  by the use 

B" %hat the rmdm 

are independent and the probability distributions of the a and $ 

and 

for 

where 

Since ET(t) was assumed t o  be random noise, the E i  are s ta t is t ical ly  independent 

and consequently p2 is not a function of frequency. The relation between the 

variance of the time sanqzles and the variance of the f'requency samples is given 

as7 

F'urthermore, the joint  distribution of a and B 

bution 

is the bivariate normal dist r i -  
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These eqressions describe the s t a t i s t i c a l  behavior of noise alone irrespective 

of the true signal, but these formulations readily permit the characterization 

of the transfornred noise suprimposed on the true spectrum. 

Frm (9) the Fourier transfarm of the received t i m ?  record e,(%) iS 

3 f q ( t )  1 = 3feTIt) 1 + 31 ET(%) 1 (16) 

or 

where 

and 

From (8) and (16) the spectrum of intensity as a f’unction of frequency becomzs 

for  the general case 

2Eo , where the transform of the 
I T 1  

The probability distribution of the variable 

noise i s  described according t o  (15) w i l l  be representative of the way the noise 

i s  distributed over the spectrum. 

2Eo can therefore be 
I T 1  

For each sample, a(%) and a(%) are fixed, and 

considered by means of the variables 

x = Z(a+a) 
T 

y = z(b+$) 
T 

where 
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Therefore, f r o m  (14) $2 =-+ 1 
BT 

The variables in (18) m y  be changed s o  that r = (s+y;?)1'2 = 1- I and 

8 = tan-'y/x- 

dlstributian p(r)dr is Rician.* That is, 

When this is done then it may be readily shown that the desired 

1 i2 
where p = (a2+b2) and Io( z )  = ($)=Lm! I 2  is the zero-order hyperbolic 

-0 1 
Bessel function. 

argumnt, is 

An alternate form of Io( z )  , usefw, for large va.lues of the 

The properties of the density Function (20) may be described by its moments 

w h i c h  are given by8 

where M is a conflwxrt hypergearnetric f'unction. 

In particular, 

and for no signal present (only noise) 

and <.'> =2p 

10 

(23) 



~ . -  - I , .  

t 
I 

Expression (20) represents the probability distribution of the amputudes 

of the spectra w‘hich include the true spectrum and the superh@osed noise. 

pasticula.r shape af the dis t r ibt t ian for a y  amplitude (any sample in the frequency 

domedn) is dependent wan the magnitude of the true signal. 

The 

That is, 

1 shows in n m z e d  farm $P(r) vs. r/$ for several val~es of 

P/*. 

 or purpose of interpretation (20) can be closely a p p r e t e d  i n  two 

particular cases: First for p = O  andfar mmXL p overthe range of 

and 

Io($) 2 1 

P(r)dr =: - ;erg{$} 
This is the Rayleigh distribution presented in ncnmdized form i n  Flg. 1 with 

p/* = 0. The s4BnipILcant point i s  that the distribution for zero signal i s  nat 

centered about zero. 

r = e. 
In fbct the peak far the Rayleigh distribution occurs a t  

The first and s e e d  mos3len-t~ are given by (24) as is sham in Fig. 1 by 

the curve for p/* = 0. 

Consider the second case where the q l i t u d e  of the true spectrum is large 

c-d t o  $, that is, p >> +. For large ‘2 from the series form of (U)  

G ( z )  =: ez/(2xz)1’2, so that (20) can be approximated by 



which for  r z 1.1 further closely approximates a normal distribution 

It should be pointed out, tha t  if  the conditions are et so that d(w) = 0 

in (2) for all 

the spectrim. 

g i ~ n  by %he p i r s t  e-tion of (13), and the spectrum, as a function of frequency, 

i s  

w, then only the cosine transform need be computed t o  determine 

Thi? imise &Lstril~>~i~ CIT? the cmpu-kd cosine transform i s  then 

The probability density function of r *  becoms from (13) 

NOISE COMPARISON 

Equation (20) and its approximation (27) characterize the statistics of the 

transform of the interferogram which includes signal plus normal (Gaussian) noise. 

Now a c-ison of interferometers and conventional spectrometers with respect 

t o  errors caused by n d  (Gaussian) noise can be made. 

xill be considered is  that which originates i n  the detector. 

The only noise which 

Detector noise i s  generally ascribedto two sources; that which is  intrinsic 

i n  the detector itself and that which i s  generated i n  t h e  detector by the statis- 

t i c a l  fluctuations of the incident photons. 

less than that due t o  incident photon fluctcation are known either as photon 

limited or background limited detectors. 

eter the signal-to-noise r a t io  is not a f b c t i o n  of the source of the detector 

I2 

Detectors whose intrinsic noise i s  

In  the case of the conventional spectram- 
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noise. This is  not the case, however, for  the interferometer spectrometer. If 

the interfermeter detector i s  background limited, the detector sees simultane- 

ously the to t a l  radiation from a l l  of the spectral elements w h i l e  the detector 

of the conventional spectrmeter i s  affected only by the radiation frm one 

spectral elerPent. Thus, the interferometer detector noise is M times greater. 

Only the non-background limited detectors w i l l  be considered a t  t h i s  time, with 

the background limited detectors being treated later. 

detectors i s  both lasge and important, being as a l l  detectors used i n  the 

infrared spectral region are considered t o  be non-background limited. 

The formr class of 

To campare the noise errors of a conventional and interfer-ter s p e c t r e  

e ter  it is necessaryto assum?! the s a m  scan time, T, for the conventional 

spec t rmte r  as far the interferomter and the same number of resolved spectral 

elements M, where 

resolved spectral element i s  1/B and the required bandpass i s  approxiraately 

B cycles per second. Therefore, the noise can be limited t o  a bandwidth of B 

and the probability distribution of the noise i s  characterized by the sam 

as used i n  Eq. (11). 

t i o n a l  case obeys the s ta t i s t ics  expressed by (11). 

analogous mmer t o  (10) s i  = si' + e i  where 

and q i s  the superimposed noise error. Hence, for  the s ta t i s t ica l  represen- 

ta t ion of each sample (amplitude) Si, the true s i g n a l  

can be considered as  the mean 

M = BT. Then the t im allowed for the measurement of each 

8 

Thus, the amplitude error per spectral elenent for  conven- 

Also, one m y  write i n  an 

si' is  the true signal. amputude 

S< = p-i i s  fixed and 

so t h a t  the probability density m c t i o n  of the 

amplitudes i s  



. 
By way of c(W?mison of a;lqplitude errors for the interferomreter spectrometer 

and the conventional spectr-ters, note the results (20) and (30) and in 

F r t i C U l a r  (28) and (30) for large signal values. 

spread of the distribution and the smller the variance the more peaked the 

distribution becapes. &an (18) 

The variance indicates the 

Hence, it can be concluded that the amplitude noise error per spectral element 

for  the interferaneter belongs, with a given probability, t o  a smaller amplitude 

range. 

errors i n  the frequency dam& where the most probable q l i t u d e  range has been 

decreased. rlnis is i l lustrated in F i g .  2, where arbitrarily BT was chosen 

t o  be 100. 

components in the spectrum. 

That is, the tinre d m i n  aqplitude errors are redistributed into anplitude 

Fig. E < 
Where it has yet t o  be shown that BT is the nlmiber of resolvable 

On the basis of these results, the noise powers per spectral elemnts fo r  

the conventional spectrcrrmeters and the interferometer can be computed and 

compared. Any caputed spectral axplitude is  of the form 

and the corre- true a@Ltude i s  

me mean square error 

which m y  be expressed as 

((r - P ) ~ >  is then the average noise power, N I ~ ,  
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The mean of r, (. > , has been caputed &om (22) and N12 evaluated as 

a function of true sigaal, p. 

that the noise power i s  a Amction of the s i g n a l  and that the mrxfnnrm noise power, 

N L ,  occurs at 

!&e results are plotted i n  FQ. 3. It is seen 

p = 0 anii i n  terms of variance 

The miniwmt noise power occurs where p/$ = 1, in which case M 2 = 0.87 $2. 4nin 
Furthermore, for larger p/$, NI' wch3y approaches F. Relating @= t o  the 

variance (or average noise parer) of the t- amputude noise by (18) gives 

For the special case where only the cosine transform describes the spectrum, 

Since (29) is a Gaussian 

e w h i c h  

the probability density function was expressed by (29). 

(n0rm.l) distribubion, the average noise power per spectral element is 

i s  clearly independent of the signal 2 a(w). 
T 

parer f o r  the interferoaneter for this case. 

Hence (32) is  the average noise 

In the tinre record, the anplitude noise pawer was &. Since the sam 

additive noise occurs directly on the spectrum of the conventional case, then 

& 

T asd bandwidth B in both cases- 

is  the average noise parer per spectral elenrent as- the 8- scan time 

It is  desired now t o  prove that  BT is eqyal t o  M, where M is the 

number of spectral  cmponents that an interfer-ter is able t o  resolve. 

that a source emits energy of two f'requencies f l  and f2. 

produces an output whose Fourier transform is of the form 

Suppose 

The interferometer 
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( ~ h a ~ i n g  th positive frequency terms). According t o  the RELY&- 

criterion, the two specfsal line6 are independent and resolvable when the murinnmr. 

af ant? coincides w i t h  a first zero of the ather. 
I 1 1  -frqsezxies f l  and f2 axe resolvable if 6f = 7 ( f l  - f2 I = ?;. 

rsIige of the  source I s  f'rm fg to fb &f, then tbe 

ntrmber of dlstinguiahe%bk independent spectral elements is M = (fb - f,)/bf. 

~n the frequency mpp- of the interfermeter fb - fa = B and 6f = + so that 

M = BT. 

In t h e  above example, then, the 

If the spectral 

anrl +hn res&i&iw is 

plus, fran (32) the noise voltage far an interferameter is 

U NI = - 
f i  (33) 

R- t h i s  it q 

tinm tbe noise voltage fur a spectrcuneter. 

sane for bath, this results I n  a f i  signal-to-noise advantage far the lnter- 

feramefer, which has been called Fellgett's advantage. 

far non-background limited detectors. 

then the mean rate of photons < 1, > incident a the detector, therefare 

the noise power, is M timzs a6 great for the interferat&er as for the cmven- 

ti& spectraPeter. 'ihue, (331, for interferameter noise voltage, beccams 

5 = Q and Fellgett's advantage is cancelled. 

seen that the noise voltage ap an intederameter ie I/,, 

Since the signal levels are the 

This advantage holds 

If the detectar %e backgrwnd limited, 

Ihe probability distributions which govern the noise sqperhposed OQ the 

8- far both the InterferaPeter and conmntiarsl epectrometer are derived 

end c-d. For hterferapbters, the variance, aad hence the mead of error 

16 
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amplitudes per spectral element, i s  less than fo r  the s a n ~  time observation and 

saxe resolution for the conventional case. J?urthermore, the noise p m r  i n  the 

spectrum i s  shown t o  be dependent on the signal, and varies f r o m  2 c P h  t o  

approxinoately @/M and hence the signal-to-noise voltage ra t io  canprisons 

shaw an advantage aP from t o  approxttely & fo r  the M e r f e r m e r .  
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F i g .  1.- Normalized probability distribution curves of the amplitude of interfer- 

omter spectra which includes the true spectrum and the superimposed noise for  

different values of the true s i g n a l  p/$. TMS demonstrates the dependence of 

the distribution on the anplitude of the true signal. Note: For zero signal, 

the distribution (Rayleigh) has i t s  geak at r = 4f. 

Fig. 2.- Conprison of noise distribution curves f o r  conventional and interfer- 

ometer spectrameters. Curves (a) and (b) are f o r  a conventional spectrometer 

with P(S) platted against S, a variance of 8 and p = 0 and loo, respec- 

tively. Curves (c) and (a) are f o r  an interferometer spectrometer with P(r) 

plotted against r, BT = 100 and CL = 0 and 100. 

Fig. 3.- noise power curve showing the dependence of noise power on the true signal. 
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